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ABSTRACT 

This report proposes a design of an adaptive receiver for the detection and 
estimation of nearly periodic signals in additive Gaussian noise.   A nearly periodic 
signal is defined to be a sample function of a Gaussian random process which can 
be divided into equal length intervals, called periods, in such a manner that the 
correlation between periods decreases exponentially with their separation.   The 
receiver computes a low signal-to-noise ratio conditional likelihood ratio from which 
the observer must make decisions.   The likelihood ratio is conditional because 
the receiver estimates any u. known parameters necessary for the computation 
of the true likelihood ratio.   Thus the receiver can only compute a likelihood ratio 
conditioned upon these estimates being the true values of the unknown parameters. 
The receiver consists of pre-emphasis filters followed by a comb filter, energy 
detector, and weighted summation.  A theoretical evaluation of the receiver, in 
terms of ROC curves, is made for the special case of nearly periodic signals with 
satistically independent equal-strength harmonics in white noise of known power. 
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THE ADAPTIVE DETECTION AND ESTIMATION OF NEARLY PERIODIC SIGNALS 

T.G. Kincaid* 

I.     INTRODUCTION 

This report proposes a system design of an adaptive receiver for the detection and estimation of nearly 
periodic signals in additive Gaussian noise.  A nearly periodic signal is very much like a periodic signal, but 
fails to be periodic because its waveform is slowly changing with time.   In this report, a nearly periodic signal 
is more precisely defined as a sample function of a Gaussian random process which can be divided into equal- 
length intervals, called periods, in such a manner that the correlation between periods decreases exponentially 
with their separation. 

The receiver design is based on the philosophy of minimization of average decision cost, which leads to a 
receiver that computes a likelihood ratio and compares it with a threshold.   However, the proposed receiver 
does not perform strictly in this manner for three reasons.   First, since the parameters which determine the 
threshold are not known, the proposed receiver leaves the threshold comparison to an observer.   Second, some 
parameters necessary for the design are estimated from the received data and inserted in place of the true 
values, which are unknown to the designer.   Thus the receiver is only capable of computing a likelihood ratio 
conditioned upon the unknown • arameters having their estimated values.   Third, the proposed receiver is the 
low signal-to-noise ratio approximation to the receiver dictated by the theoretical analysis.   This approximation 
results in comparatively simple receiver implementation without sacrificing threshold performance. 

The operation of the proposed receiver can be satisfyingly interpreted in terms of the estimator-correlator 
structure described by Kailath, (24) followed by an incoherent summing operation.   However, the receiver is 
more easily implemented if given an alternate interpretation, consisting of three distinct filtering operations 
followed by energy detection and the incoherent summing.   The first two filtering operations are pre-emphasis 
filters which build up the high signal-to-noise ratio regions of the input.   The third filter is a frequency domain 
comb filter with tooth separation equal to the inverse of the period of the nearly periodic signal, and tooth 
width determined by the intra period correlation of the nearly periodic signal.   This comb filter is the heart of 
the receiver, and can easily be implemented as a circulating adder, which coherently adds weighted sequential 
periods of the pre-emphasized input.   The comb filtering is followed by energy detection and an incoherent 
summing operation. 

A partial evaluation of the receiver has been made by considering only the performance of the processor 
without the incoherent summing.   Confining the evaluation to this part of the processor makes theoretical 
evaluation tractable.   The evaluation is made for an input consisting of a nearly periodic signal with statistically 
independent constant amplitude harmonics and additive white Gaussian noise of known power.   The evaluation 
is made in terms of Receiver Operating Characteristics (ROC), which display the probability of detection vs 
the probability of false alarm. 

IT.   ADAPTIVE RECEIVER DESIGN PHILOSOPHY 

This section sets forth the philosophy used to design the adaptive receiver for nearly periodic signals. 
The philosophy presented here is a summary of the literature in the area, and is general enough to be applied 
to a variety of adaptive receiver design problems. 

A.   Receiver Design 

The basic function of any receiver is to make decisions about the values of one set of random variables 
(messages) given the values of a different set of random variables (data).   We usually distinguish two different 
functions of receivers: detectors make decisions which are either right or wrong, and estimators make 
decisions which are seldom exactly right, but can often be close.   The same receiver may perform both 
functions. 

»General Electric Company, Heavy Military Electronic Systems, Syracuse, New York.   Work carried out at 
General Electric Company, Research and Development Center, Schenectady, New York,  12301. 

1- 



How do you design such a receiver? As a starting point, we note that all we can know about the message 
random variables is contained in their joint probability density; thus, It seems reasonable that the receiver 
should first compute the joint probability density of the message variables conditioned upon the known values 
of the data variables.  This is called the posterior probability density of the message; i.e., the density after 
the data are known.  The receiver can then make decisions based on the computed posterior density, according 
to any criterion of goodness based on average performance.  Our guiding principle will therefore be that the 
receiver is to be designed in two parts: (1) a posterior probability computer, and (2) an estimation or detec- 
tion decision maker. 

B. Adaptive Receivers 

There seems to be no rigorous definition of what constitutes an adaptive system.  Scudder's concept(2) of 
an adaptive system as one "--whose behavior changes with time, depending upon the input," is certainly broad 
enough to contain the thinking of most authors on the subject.  However, this definition is too general to allow 
the design of a canonic adaptive receiving system, so the design is still an art. 

A number of authors have shown how the use of the Bayes rule (Section II-C below) to compute posterior 
probabilities can lead to an adaptive processing system.  This is accomplished either directly using a sequential 
form of Hayes' rule, '3"8) or indirectly by appropriate interpretation of the formulas describing the receiver 
resulting from the application of Bayes' rule. (9)   However, the practical application of the Bayes rule approach 
has proved difficult.  One problem is that the resulting receiver may grow exponentially in complexity as more 
and more data are received.^' A more fundamental difficulty is the so-called "a priori* problem.U""^) The 
a priori problem arises because it is necessary for the computation of posterior probabilities by Bayes' rule 
that the prior probabilities be known for both the message random variables and any unknown parameters 
required to design the receiver. 

Some designers have avoided both the complexity and a priori problems by designing systems according to 
some criterion other than the computation of posterior probabilities. (14-16)  F0r those who insist on the rigorous 
computation of posterior probabilities, Spraginsv1'') has demonstrated that the complexity problem can be over- 
come only by the use of sufficient statistics and reproducing densities, an area also investigated by Birdsall. ^> 
It appears that for manv applications sufficient statistics can be found, although it may be necessary to make 
some approximations. U9) xhe more difficult a priori problem has not yet been satisfactorily resolved.   The 
currently favored approach is to use the principle of maximum entropy, with any prior knowledge as con- 
straints, to derive prior probability densities.^2,19) if enough input data is available to the processor, it 
can be shown that under rather general conditions the choice of prior probability density is irrelevant, provided 
it does not exclude the true value of the parameter sought. (28) 

Another approach (Section II-D below) to overcoming the complexity and a priori problems inherent in the 
use of Bayes' rule is to estimate the unknown parameters from received data, and then to insert the estimates 
in place of the actual values. (20,21) This results in an inherently adaptive receiver, but one which does not 
actually compute the posterior probabilities.   However, the use of estimates for the unknown parameters 
makes the receiver asymptotically equivalent to the desired posterior probability computing receiver if the 
estimates approach the true values.   Even so, this limiting condition is never reached in practice, and often 
cannot even be approached arbitrarily closely because the true values of the parameters are changing.   What 
this type of "suboptimal'' receiver actually computes is the posterior probabilities of the desired variables, 
conditioned upon the unknown parameters having their estimated values. 

In summary, an adaptive receiver can arise from at least two considerations, both of which may be used 
in the same receiver. The first is the use of the sequential form of Bayes' rule to compute posterior proba- 
bilities.   The second is the use of current estimates of parameters in place of true values. 

C. Computation of Posterior Probabilities 

Suppose a receiver is given a data signal Z which contains information about a message random variable, 
Q, whose value we wish to determine.   (Two random variables contain information about each other if they are 
dependent.) Then, according to our philosophy, the receiver first computes f(Q/Z), the probability density 
function of Q given Z.  The computation of f(Q/Z) can be carried out using Bayes' rule, viz. 

f(Q/Z) = t(Z/Q)f(Q)/f(Z) . (n-i) 

The term f(Q) is the prior probability density function of the message Q, i.e., the probability density 
function of Q before Z is received.  As discussed above, the precise specification of this function is still a 
matter of philosophical discussion, and it figures prominently in the subsequent decisions.   It is sufficient for 
now to note that the prior density does not depend upon the input Z. 
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The term t(Z/Q) does depend upon Z.  Although l{Z/Q) is a probability density function for the random 
variable Z, we are interested in t(Z/Q) as a function of Q, since we ultimately wish to compute the probability 
density function f(Q/Z) on the left of Eq. (11-1).  As a function of Q, t(Z/Q) is not a probability density function, 
and it is commonly called the likelihood function.   Note that since the likelihood function contains the input signal 
Z as a parameter, its functional form is dependent upon the input. 

The term f(Z), the prior probability den Jlty function of Z, is also dependent upon Z.  However, it is not 
independent of the form of the likelihood function because of the constraint 

JdOKQ/Z) =   j'dQt(Z/Q)f(Q)/f(Z) = 1 . (n-2) 

Thus we can view f(Z) as a normalizing constant, and write 

f(Q|Z) = a t(ZlQ)f(Q). (n-3) 

where 

a-1 =   JdQdZIQWQ) . (n-4) 

Since f(Q) is specified a priori, and since the normalizing constant a depends upon the likelihood function 
through Eq. (n-4), an important function of the receiver is the computation of the likelihood function i(ZI Q). 

We wish now to consider what happens when the receiver receives two successive inputs, Zi and Zi, which 
contain information about the message Q.  After the first input, the receiver computes 

f(QlZ,) = a,t(Z1|Q)f(Q) . (n-5) 

After receiving the second input, the receiver computes 

f(Q|Z,,Z2) =a2t(Z1)Z2|QM(Q), (n-6) 

in order to take advantage of all the information in both Zi and Zt. 

In general, for a set of k inputs {Zjjjj containing information about a message Q, the receiver computes 

ftQIfZilk) =akd{Zi}k|Q)f(Q), (n-7) 

with a^ computed as in Eq. (II-4).   In Eq. (II-5), the likelihood function depends only on the input Z^ and we 
have a "one-shot" receiver.   In Eq. (II-7), the likelihood function depends upon the whole input sequence f Zj}^ 
and therefore describes a "multishot", or sequential, receiver.  As with the "one-shot" receiver, an important 
function of the sequential receiver is the computation of the likelihood function (.({Zi}^! Q). 

As has already been noted, the likelihood function is a function of Q and not the f Zj}^ in the context of 
Eq. (11-7).   Rather, the (Zi}k are parameters of the likelihood function that determine us functional form. 
Thus the likelihood function will change in a manner determined by the receiver inputs.   It is this view of the 
sequential computation of posterior probabilities which leads some authors to call this type of receiver 
adaptive.^9' 

D.   Treatment of Unknown Parameters 

It almost always happens that the likelihood function contains parameters which are unknown, but which are 
critical to the evaluation of the likelihood function.   These parameters may be associated with the message 
bearing signal (e.g., amplitude, phase), the noise (e.g., noise variance), or some other aspect of the problem. 
vVe shall describe two methods of dealing with this problem: the marginal density method, and the estimation 
method. 

1.    The Marginal Density Method 

The most widely proposed^"*, 22) method of handling unknown parameters is to compute the joint density of 
the message and the unknown parameters, and then to integrate over the unknown parameter random variables 
to obtain the (marginal) density of the message. 

The computation is as follows.   For a message Q and an unknown parameter A, the posterior density of 
Q is 



Thus the likelihood function is 

KQIfZjJk) =  |dAf(Q,A|tZl]k) 

= JdAakt(fZi}k|Q,A)f(Q,A) 

= ak[JdAi{fZi}k|Q,A)f(A|Q)]f(Q). (n-8) 

iUZilitlQ) = j'dAt{fZi)k|Q,A)f(A|Q) . (II-9) 

It often happens that Q and A are independent, in which case only the unconditional prior density of A is needed 
for the likelihood function. 

The problem with this approach is that the likelihod function cannot be computed without the prior proba- 
bility density of the unknown parameter.   Since this density is usually not known, it must either be assumed or 
plausibly derived by some technique such as maximum entropy. 

2.    The Estimation Method 

When the prior probability density of an unknown parameter is not known, a "suboptimal" receiver must 
be used. One possibility is to design the receiver as though the parameters were known, and then substitute 
estimates of the paramefers for their true values. 

To understand the meaning of the estimation method, consider the computation of the joint density of the 
message and the unknown parameter; however, instead of computing the complete joint density of the message 
Q and the unknown parameter A, we compute the probability density of Q only for A equal to its estimated 
value A.  Thus we compute 

f(Q,A^A|[Zi}k) = akt({Zi}klQ,A=A)f(Q,A^) . (11-10) 

After normalization, the function on the left of Eq. (11-10) becomes the density of Q given FZi}k and A=A. 
Thus, the estimation method can be thought of as the computation of 

«(QlfZi^.A) = 4t'l21}kIQ,Ä)f(QIÄ) (n-ii) 

where 
JdQt(Q,A=A) 

ak = ak  (11-12) 
K   JdQt(Q,A=Ä|{Zi}k) 

The constant ak is required to normalize the two probability density functions.  Equation (11-11) shows that the 
resulting receiver computes the posterior density of the message, given that the parameter has its estimated 
value.   Thitadensity converges to the desired posterior density of the message as the parameter estimate 
converges to its true value.   For some kinds of estimates (Section n-E-2 below) it is not necessary to know 
the prior density of the unknown parameter.  Wien these estimates are used, the a priori problem does not 
arise. 

If the unknown parameter estimates are continually updated as new data are received, then the receiver 
will be constantly changing.   Furthermore, the receiver may have the ability to change its form in response 
to a slowly changing parameter, e.g., noise variance.   Thus a receiver which handles unknown parameters by 
the estimation method can be called adaptive. 

E.   Decision Making 

1.    Detection 

We shall concern ourselves only with the problem of deciding between two possible values of a message 
variable, given the received data; thus, a message Q can take on only two values, Qj or Qo.   These might 
represent "target present" and "target absent," respectively.   This restriction on Q gives the posterior 
density for Q a particular form. 



f(Q|Z) = at(Z|Q)[a5(Q-01) + (l-u)«(Q-Ql))] 

(n-i3) 

= au t(Z| Q,) »(Q-Q,) + a(l-n) i(Z\ Q,) 5(Q-Qo) 

where u and 1-u are the prior probabilities of Qj and Qo, respectively.   Note that the posterior probabilities 
of Qi and QQ are au^ZIQj) and a(l-u) t(Z| Qo), respectively. 

Suppose we are interested in determining if Q = Qj.   Then the possible outcomes of the decision process 
are 

1. detection - decide Q = Q1 when Q - Qi 

2. miss - decide Q = Qo when Q - Qi (n-14) 

3. false alarm - decide Q = Qi when Q = Qo 

4. (no name) - decide Q = Qo when Q = Qo • 

Of these four possibilities, two are correct decisions, and two are errors.   The problem is to make I ne 
decisions in some best way. 

We shall select as our ideal decision criterion the minimization of the expected cost of our decisions. 
We can denote the costs of the four outcomes as c,,, where i refers to the decision and j to the actual value 
of Q.   Thus CJO is the cost of deciding Qi when actually Q = Qo.   Then the cost, c, of any particular trial of 
the experiment is a random variable, wh'ch can take on any of the values c^. 

We assume that the cost of a wrong decision is higher than the cost of a correct decision, i.e., 

Cio > Coo (II-IS) 

coi > c,i  . (11-16) 

The receiver which minimizes the average cost (c> performs the Bayes test, (33, 34) v\Zi 

c°""»re     n^yfe     '"lh      Ä ("-■" 
and decides Qj if the ratio exceeds ihe threshold, Qg if not.  The Bayes test needs posterior probabilities, 
and makes their role in the decision process explicit.   It is more common to write the Bayes test in the form 

compare \(Z) = *-gIQ,) with ilz^JS^Ml   . (n-18) 
uZIQo) M(COI - Cn) 

The quantity \(Z) is called the likelihood ratio.   The likelihood ratio depends only upon the likelihood function 
{,(Z| Q), and is independent of the prior probabilities of Q.  One major difficulty with the Bayes test is deter- 
mining the threshold setting on the right of relation (n-18).  Not only is there the a priori problem, but there 
is the additional problem of assigning costs.   It seems the best that can be done is to present the observer 
with the likelihood ratio, and let him make decisions.   In effect, the observer inserts the prior probabilities 
and costs from his experience and knowledge of the tac.ical situation.   From this combination he sets a mental 
threshold and makes his decision. 

A second problem with the Bayes test is that the likelihood ratio cannot be compvited exactly if the prior 
probabilities of the unknown parameters are not available.  Oiu* philosophy then is to use the conditional 
posterior probabilities determined by the estimation method described in Section n-D-2;that is, estimates of the 
parameters are used as though they were the true values.   This results in a conditional likelihood ratio 
(author's definition).   For an unknown parameter with estimate A, the conditional likelihood ratio is 

X(Z[A)=dZIQl'A)   . („-19) 
t(Z|Qo,Ä) 



The methods by which the estimates can be made are described in the next section.   When A is a maximum 
likelihood estimate (Section II-E-2 below) the conditional likelihood ratio is equivalent to the generalized 
likelihood ratio.(34) 

Since it may not be possible to evaluate the receiver by costs, we need another method of evaluating the 
receiver.  A commonly used method that Is independent of the message prior probabilities is the receiver 
operating characteristic (ROC).   This is the plot of the probability of a detection (p^) vs the probability of a 
false alarm (pf) when the receiver compares the likelihood ratio with a threshold level *i.   It has been shown 
by Neyman and Pearson"^that a receiver which makes detections by comparing the actual likelihood ratio with 
a threshold will maximize the probability of detections for a fixed probability of false alarms.   This theorem 
ensures that the ROC curves will rate the receiver which computes the true likelihood ratio superior to the 
one which computes a conditional likelihood ratio. 

The ROC curves are determined as follows.   The (conditional) likelihood ratio, \, is a random variable. 
The probability of detection is given by 

Pd = ^ dx f(x|Qt) (11-20) 

and the probability of a false alarm is given by 

n{ =   f     d\ f(\IQ0) . (11-21) 
-'•n 

Then, the ROC curves are computed by choosing values of n, computing p^ and pj, and plotting one vs the 
other. 

2.    Estimation 

There are two principal reasons why we may need to make an estimate of the value of a random variable. 
It may be that the random variable is an unknown parameter and we wish to have the estimate for use in the 
estimation method of receiver design described in Section II-D-2.   The second reason is that the random 
variable may be a message, and having an estimate of its value is important for reasons other than receiver 
design, e.g., target classification. 

Whatever the reason, there are a number of different ways of making estimates, each having particular 
advantages in certain situations. 

Unconditional estimates are based on both the received data and the prior density of the unknown param- 
eter.   Two widely used unconditional estimates are; 

The Minimum Mean-Square Error (mms) Estimate.   The mms estimate of a random variable. A, given 
the value of a random variable, Z, is the value A of A which minimizes 

e2 =   TdA (A -Ä)2f(A|Z) . (11-22) 

It is straightforward(34) to show that the minimum is given by the conditional mean of A. 

dAAf(AIZ)   . (11-23) 
/• 

The Maximum Posterior Probability (mpp) Estimate.   The mpp estimate of a random variable, A, given 
the value of a random variable Z, is the value Ä of A for which the posterior density of A is a maximum; in 
other words, A is the most probable value of A when Z is known. 

A = A for which f(A| Z) is maximum. (11-24) 

This estimate is also called the maximum a posteriori (map) estimate. 

Conditional estimates depend only on the received data.   Because of this, conditional estimates can be 
used in the estimation method of handling unknown parameters (Section II-D-2).   Two popular conditional 
estimates are; 

The Maximum Likelihood (m/J Estimate.   The m', estimate of a random variable, A, given the value of a 
random variable,' Z, is the value A of A for which the likelihood function for A is a maximum. 
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A  = A for which (.(Z|A) Is maximum. (n-25) 

In other words, A is the value of A that most likely caused the given value of Z to occur. 

The Likelihood Ratio (tr) Estimate.   The ir estimate of a random variable, A, given a random variable, 
Z, is the value of A of A for which the likelihood ratio of a message Q is a maximum. 

A  = A for which x(Z|A) is a maximum. (11-26) 

This estimate is the most widely used for the estimation of unknown target parameters in detection problems; 
e.g., range in sonar.   When used for this purpose, it is equivalent to the nu estimate, given the target is 
present.   The estimate is made by forming the likelihood ratio for all possible values of the unknown param- 
eter, and choosing the b.^    .t ratio.   This is, in effect, constructing a separate likelihood ratio detector for 
each value of the unknown parameter, and choosing the value of the parameter corresponding to the detector 
with the largest output. 

HI. ADAPTIVE DETECTION AND ESTIMATION OF NEARLY PERIODIC SIGNALS 

The objective of this beclion is to design an adaptive receiver for the detection and estimation of a nearly 
periodic signal in additive, zero mean, Gaussian noise.   The detection problem will be given primary con- 
sideration, the estimation coming as a by-product. 

In this work it will be assumed that the nearly periodic signal is a sample function of a nonstatlonary 
Gaussian random process, of the type described in the Introduction.   A more detailed description of the prop- 
erties of the nearly periodic signal are given in Sections III-A,B below. 

A.   Known Parameters 

We shall first solve the detection problem when all parameters are known except whether the signal is 
present or absent.   Then, after the appropriate receiver is derived, the extension to mknown parameters will 
be made by the methods described in Section II-D. 

We shall represent signals by column matrices whose entries are the time samples of the signals.   We 
assume that the receiver input signal is either the noise only, or a sum of the noise and a nearly periodic signal 
with the properties described above.   We further assume that only s successive time samples of the input are 
available.   Then the matrix equation for the input signal is 

Z        X^N, (m-D 

where      Z     is the input signal matrix; 

2      is a random variable which is either 1 or 0, depending upon whether the nearly periodic 
signal is respectively present or absent; 

X     is the nearly periodic signal matrix, assumed known here; and 

N     is the zero mean Gaussian noise signal matrix. 

For detection, the receiver computes the likelihood ratio 

.a)  $r-i)- m-2) 

In the context of this problem,      is the message Q in Eq. (11-1).   Under our assumptions, the likelihood function 
in Eq. (Ill-2) can be written as 

r(Z|   )  - (2-)-s/2 |'Nrl/2 cxpf- ^ (Z--X)*»N-,(Z--X)     . (in-3) 

In this equation,   J^ is the s x s noise covariance matrix, and  • denotes matrix transposition. 

We assume that when the input signal is sampled near the Nyquist rate for the nearly periodic signal, then 
there are exactly p time samples of the nearly periodic signal in each period.   We further assume that the 
noise is significantly correlated only over a number of adjacent time samples which are small compared to p. 
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This Implies that the noise spectrum does not vary too rapidly over the frequency band occupied by the nearly 
periodic signal. 

Then we define Z,  to be a   1 < p column matrix whose entries are the p entries of Z from (1-1) p « 1 to 
ip Inclusive, correspondlnt; to one period of the periodic waveform, and X| similarly.   We will assume 
stationary noise and define »NB to be the p x p matrix whose rows are the p entries of *N contained in rows 
(1-1) p + 1 to ip Inclusive, anfl the columns of the same Index, for any I. 

Under the above assumption about the noise correlation, and usintt the notation described above, the like- 
lihood function of Eq. (III-3) can be written approximately as 

k 

dZ|-i) - (2-)-kP/: |»NprK J expr- ^   /  (Z,-  X^' ?N,
p (Z,- V 'n,-4> 

i   i 

where k Is the number of times p divides s.   In neiu-ral, p will not divide s evenly, and so fc:q.(in-4) ignores 
a portion of the Input signal in computing the likelihood function.   However, for k» 1 (i.e., many periods), 
this excess signal will make a negligible contribution to the likelihood function, and so can be neglected for the 
sake of simplicity. 

Equation (111-4) is an example of how the computation of the likelihood (unction for a specific problem can 
resul* in an adaptive Interpretation for the processor.   The equation show» that the likelihood function changes 
each time a new set of p samples is added to the Input signal, giving a sequential type adaptive receiver as 
discussed In Section 11-R. 

B.    Unknown Parameters 

In general,   }« ,  (Xj), and p are unknown.   In this case, the receiver can be designed using ttie methods 
described In Section II-D for handling unknown parameters.   The methods may be Intermixed.   If possible, it 
Is desirable to cse the marginal density method, since it gives unconditional posterior probabilities. 

For the set of unknown waveforms fXi), we shall use the marginal density method.   We shall assume that 
the p samples in any period of the nearly periodic waveform are zero mean Gaussian random variables with 
covarlance matrix ixp«   which is the same for each period.    We further assume th^t the samples In the Uli 
and Jth periods, which are  li-jl  periods apart, have a cross covarlance matrix      '")' i^n' where 0<-    I. 
From these definitions we see that the marginal density method is Ftill going to leave the plrameters «^   and 
o to be specified.   We shall assume that these parameters are either known or will be estimated.   In the l;<lttT 
case we still proceed as through these parameters were known, and substitute the estimated values for the true 
values at the end. 

The parameters p and •»„ will be estimated.   Since p is a parameter of a signal which may not be pres- 
ent,   It will be  estimated using the likelihood ratio estimate (Section n-E-21, i.e.. by building parallel 
receivers, one for each value of p.   The noise Is always present, and Its covarlance can be estimated contin- 
uously by maximum likelihood or some other technique.   We therefore proceed as though p and  i^« were 
known. 

Now the likelihood function for      Is 

'. (Zl   )       , dX /(Z1   ,X) HX' •) 

(III-rj) 

rdX,)k/(Z"   .-X^IK-X, k)   , 

assuming the  (Xiji, are independent of    .   The integral <>n the set  'Xj ^ Is to be interprettd as the kp-fold 
Integral on the entries of X.   In Eq. (Ill-5), the first term of ih • integrand is given by Eq. (Ill-4).   The second 
term Is the prior density of the set of waveforms ^i^. I.e.,   he prior density of X. 

An expression for the prior density of the  'Xji^ can be derived as follows.    From the above definitions, 
the covarlance matrix for the s - kp samples from the periods of the nearly periodic waveform X is the s . s 
matrix J^, which can be written as the Kronetker product(26, 27) 

,x    i>,.Xp (in-6) 

where 



1        r 

c7      P 

>1 

1     (in-7) 

From the prupc... H of Kronecker products, the Inverse of tx 'B 

where 

(l--2)-' 

0      0 
I 

l.-J 

0 
I 

UrJ 

U-Ji 

o 1 

This inverse of P cjm be verified by direct multlplliatlon.   Thus we can write 

f(fXiik)  = f(X) 

M^rk^!»xl",/lexpf-.Jx,,x,Xl 

^rkp/,iprp/,ifXpr
K/l 

, k k-i 

exp Ull-:'",4).xi,'Xpxi'-?Xxi,»XpXi 
i-j 

k-i k 
• • j •       - | 

■']    XIM !Xpxi-8/   xi   'Xpxi| i 
i -1 s  ' i  i 

(rn-8) 

(in-9) 

(in-io) 

Now the likelihood function can be evaluated by substituting Eqs. (III-4) and (III-10) into Eq. (in-5) and 
integrating.   The integral is conveniently evaluated separately for the two values of    .   Carrying out the 
integration, the likelihood function    -0 is 

/(Zl   -0) = (2")"kp/2|'Npr
k/?exp 

und the likelihood function for       1 is shown in Appendix A to be 

*)X' -1 
Npzi 

i -i 
(m-ii) 

'(Z-.   1)      ^)-kP/JhNp|-k'expUy   Z^N'pZ, 
I       i--i 

''Xp' (1"-"'  ' "    IAil        exP IÖ C 

(in-12) 

where Aj and Cj are given by Eqs. (A4) and (A6) in Ap|)endLx A. 
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Using these results, the likelihood ratio Is 

V(Z) i(Z 
TT?"" 

■vl 

(     k 
(m-i3) 

\>Xpr
k/Ui-0*)-v{k-l)/* ^ ^-/'exp jy c.j 

A more convenient parameter Is the logarithm of the likelihood ratio. 

\(Z) - In 
k * 

ifxj-
k/2(K'rp(k-,)/2 i IA^/»:. ' )' ct. mi-M) 

Since the parameters p,»Np,r. and j^p are to ^ estimated If they are not   known, the above equations are 
really (or a conditional likelihood ratio, as discussed In Section II-E-l. 

IV.   PRACTICAL RECEIVER DESIGN AND EVALUATION 

A.   Practical Receiver Design 

1.    General Structure 

In the previous section, It was shown hat the receiver for the detection of a nearly periodic signal i-omputos 
the logarithm of the likelihood ratio given in Eq.Un-14).   The expressions for the coefficients A| and c. given 
byEqs. (A4undA6)are complicated and do not lend themselves to a simple receiver design. 

A simple receiver design results if the receiver computes the logarithm of the likelihood ratio only for low 
signal-to-noise ratios.   This is also a practical constraint, since it is not necessary for the receiver to be 
sensitive at high signal-to-noise ratios where detection is much easier.   We define low signal-to-noise ratio 
as the condition where the eigenvalues of the signal-to-noise ratio matrix,  Tv- «^n* are much less than 
unity. ('" Under this condition, it is shown in Appendix B that the coefficients A| and c. are approximated by 
Eqs.(B2) and (83), respectively.   Substituting these equations into Eq. (m-M), the logarithm of the likelihood 
ratio becomes 

•, - In  hl-c*)-^] 

1 + 1 

1='  \j=i 

r/k \•     /i 

(IV-l) 

[   o^'NpZj   )»Xp(^   ^»NpZj) 

In Eq.dV-1), the first term is an additive constant, unaffected by the Input to the receiver. The last two 
terms are the ones which need to be computed by the receiver. We shall denote these terms, without the 1 '2 
multiplier, by 

K" 1 

q = (1-P2) V '   q! ^qjt (IV-2) 
l-i' 

where 

fli =( ; ' °H »NP Zj)  'xp ( T pi"J *v ZjV '= 1 tü k • (IV-3) 

The heart of this low sigm.l-to-noise ratio receiver is the computation of the qj.   By interpreting the square 
matrices »xp and *Np a9 Mnew" filters^4,35) (which may be time variable and/or unrealizable), this 
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computation can be given at least two Interpretations: the estimator correlator Interpretation, and the filter- 
energy detector Interpretation.   The estimator-correlator Interpretation shows the connection between the 
results obtained here and thr> work of Kallath, ^' and also allows an adaptive explanation of the receiver 
operation which Is a particular case of the work of Nolte, W and closely parallels the work of Jakowatz, ftmey, 
and White. (I*'   The filter-energy detector interpretation does not provide the same Insights Into the receiver 
operation but Is  simpler both In    concept and implementation than the estimator-correlator interpretation. 

The estimator-correlator interpretation comes about from the following manipulation of Eq. (IV-3).   Since 
the matrix |ÜL Is positive definite, it can be split into the product of a triangular matrix and Its transpose, as 
follows:132'    P 

»N'p^WpWp (IV-4) 

then Eq. (IV-3) can be written 

V)    wp Z.y'J »xp »N'P zj 

(IV-5) 

I 
; 

t=i 
c1"-   I iWpZ, 

Kallath^24'has shown that the filter Wp is a prewhitening filter, and in Eq. (IV-j)) Wp prewhitens the noise 
component of each period Z.  of the received signal.   The filter cascade *xp »jgp  14 the low simal-to-nolse 
ratio approximation to tue wiener filter which estimates the signal Xj from Zj   see Kallath*24'\   In Eq.(IV-5) 
these individual estimates are weighted by the ?''' and added to form an over-all estimate, 

i 

^i   -Z  ^^ 'Xp'NpZj   - «V-«) 
j=i 

of the ru'.rent period Xj of the nearly periodic signal.   This over-all estimate is distorted by the filter Wp 
to compensate for the distortion of Zj by W-, and then correlated with each of the i prewhitened input periods 
WpZ( .   The matrix product Inside square brackets in Eq. (IV-S) is this correlation.   The scalars that result 
from the i correlations are then weighted by the »'''- and summed to give the qj.   This interpretation of the 
receiver can be given an adaptive character by viewing it as a correlation receiver in which the reference 
waveform  Xj, given by Eq. (IV-6), is not fixed but instead estimated from the received data.   Thus the ref- 
erence waveform adapts itself somewhat in the manner of the filter built by Jakowatz, Shuey, and White,' ^ 
but following the theory described by Nolte.'"' It is of interest to note that when r=0 Eq. (IV-5) reduces to 

q,   =  (WpZ/tWpJxp^Zi)   , (IV-7) 

which is the low signal-to-noise ratio approximation to Kallath'st2^) zero mean signal receiver. 

The filter-energy detector Interpretation comes about as follows.   Since the matrix $xp 's positive 
definite, it can be sollt into the product of a triangular matrix and its transpose. ^2) 

»Xp = G*G   . (IV-8) 

Then Eq. (IV-3) can be written as the vector squared magnitudi 

I 
q,   =  II ^ rHc»^1 ZjM2   . (IV-9) 

Equation (IV-9) shows that the qi are the result of passing the Zj through the filters G and »fj1-, weighting 
the filtered outputs by o   *, adding tnem together, and computing the energy of the sum.   The total Tilter G*^_ 
can be Interpreted In terms of prewhitening and low signal-to-noise ratio Wiener filtering, but a straightforward 
interpretation in terms of pre-emphasis filtering suffices here.   The filter JC,1   has the effect of emphasizing 
the regions of the spectrum where the noise power is low, and It emphasizes mese regions more strongly than 
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a prewhltenlng filter.   The (liter G Is the (liter whose spectrum Is the square root u( the spectrum of »x . 
This (liter emphasizes the portion of the spectrum where the desired signal Is expected to be, and de-empnaslzes 
the other regions. 

The summation which follows these two filters Is the means by which the receiver takes advantage of the 
nearly periodic structure of the desired signal.   The filtered waveform sections are weighted and added on top 
of each other, and when there Is a nearly periodic waveform present, this sum will be larger than when there 
Is not.   This coherent summing opeiatlon Is sometimes referred to as a circulating addition, because It can be 
Implemented by a delay line with (eedback, i.e.. a recirculating line. 

This circulating adder Is completely equivalent to a frequency domain comb filter acting on the output of 
the G and |ü. pre-emphasls filters.   This equivalence Is shown In Appendix C, with the frequency response 
Y(f) of the direr given by Eq. (C2).   Taking the sampling interval as the fundamental time unit, the comb (liter 
"t<>otha separation is shown to be 1/p, and the tooth width between the 1/2 power points Is U/-p) In {I/)), AH 
shown in Fig. 1. 

C/p) 
('/plfnC^+ia^f-h/p) 

± hlJA 
TTP        \PI 

BETWEEN 1/2 
POWER POINTS 

 FREQUENCY 

Fig. 1 The frequency response of the comb filter Interpretation of the weighted circulating adder. 

With this interpretation of the circulating adder as a linear time invariant filter, the ptrtlon of the receiver 
which computes q>become8 rather simple.   It is a cascade of the «üL G, and comb filters, followed by an 
energy detector. The energy detector computes the energy of the filter output in each successive period, and 
these energies are the qj.  The remainder of the operation of the receiver Is dictated by Eq.(IV-2).   This 
equation shows that the quantity q, which determines \, is a weighted sum of the q<.   All the qj but the last 
are weighted by (l-o*); this last q^ is given unit weight.  This weighting means that the energy of the most 
recent p length section of the filtered input is given considerably more weight than the energies of previous 
sections.  This is not surprising, since the most recent coherent summation embodied In the comb filtering 
operation has made use of practically the same information as the previous summations, except for the last 
p-length section.   Thus, the contribution of the individual previous coherent summations is de-emphasized 
relative to the last.   However, the contribution of the sum of these previous terms is not negligible for k on 
the order of (l-o,^, and larger.   This incoherent processing can make an important contribution to the value 
of q. 

The discussion of this section can no* be summarized in a block diagram of ehe proposed receiver (or 
nearly periodic signals.   This block diagram is shown in Fig.2.   In the following sections, a discussion of the 
implementation of each block is given. 

2.    Details of Structure 

The noise pre-emphasis filter structure depends upon the noise co'-ariance matrix, which we have assumed 
Is not known to the designer.   We have proposed to estimate this matrix from the input data.  The difficulty is 
that this matrix must be inverted to design the filter.   This inversion is made relatively simple by the assumption 
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PRE-EMPHASIS    PRE-EMPHASIS    FILTER 

FILTER FILTER 

ENERGY DETECT      WEIGHTED 

AND DUMP ENERGY 

EVERY p SAMPLES SUM 

DISPLAY q 
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FiK. 2 Block diagram of the nearly periodic signal detector and estimator.  One such detector is required for 
each period p. 

that the noise Is nearly uncorrelated over a whole period of the nearly periodic signal, 
this means that the noise covariance matrix is of the form 

Np - ^p " E) 

For stationary noise, 

(IV-10) 

when ~iL   is the noise variance, I   is the identity matrix, and E is a matrix whose off-diagonal entries are 
much less than one, and whose diagonal entries are zero.   The quantity of interest is the inverse of this matrix, 
which can be approximated by the first two terms of the binomial expansion for matrices 

'Np '^Np " ET 

7Np 
2   (I - E) 

(iv-in 

e -rLp and the coefficients of the E matrix can be estimated, for example, from the data by sub- 
estimate of the desired signal from the input and averaging the products of the remaining data at 

The varianc 
tracting the 
appropriate time delays. 

The signal prc-emphasis filter G is uniquely determined from the nearly periodic signal covariance matrix 
•vp in the manner indicated by Eq. (rV-8).   It is necessary either to know this matrix, or to estimate il,   For 
a lirge number of possible SJJ  , the parallel receiver method is impractical.   There seems to be no alternative 
to having as much knowledge of ;^    as possible available to the designer.   Simply stated, this means the 
strengths and cross correlations or the harmonics of the nearly periodic signal must be known. 

It should be noted that both the noise pre-emphasis filter and »he signal pre-emphasis filter are time 
varying.   These filters must be realized by an operation equivalent to multiplying the samples of each Individual 
period of the input by a square matrix, and taking the result as the samples of the corresponding period of the 
oulpu'.   Furthermore, the noise pre-emphasis filter is unrealizable in the classical sense because the t^i 
matrix is not triangular. The time variant and unrealizable features of these filters prevent their easy imple- 
mentation by analog networks.   However, the matrix multiplications can be easily performed by a computer, 
with speed as the main limitation. 

The comb filter, or weighted circulating adder, is the heart of the processor.   The circulating adder is 
easy to implement, especially with a computer.   The only parameters of this filter are p and 0.   The param- 
eter p is to be handled by the estimation method, and hence need not be known, since ail values of interest 
can be tried using parallel receivers.  The parameter : must either be known, or estimated in th ,■ same 
manner as p.   The estimation of these parameters is discussed further below. 

The energy detection and weighted energy sum portions of the processor are fairly straightforward.   The 
energy detector simply computes the energy q^ in each period of the comb filter output, and outputs this in- 
formation every period.   The weighted sum q is then found by adding all the qj weighted by  I-?7, except the 
most recent, which is weighted by unity.   This raises the question of how many qj should be added.   This 
question has not arisen before because it is inherent in the formulation of the problem that the nearly periodic 
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•Ignal la either preaent or absent with fixed period (or the whole experiment, HO the ^ can be added Indefi- 
nitely.   If thla la not true, the qi can be added only as long aa the nearly periodic signal Is present with a 
fixed period, otherwise the performance la degraded.   It seems that this decision must be made by the dcslKner. 
It may even be advantageous to leave out the weighted energy aum altogether, substituting eye Integration In 
connection with an appropriate display. 

3. Parameter Eatlmatea 

Aa Indicated at the beginning of Section III, the estimation problem Is automatically solved as a by-product 
of the detection problem.   The period p Is to be estimated aa part of ehe detection problem. In the manner 
described below In Section IV-A-3.   The parameter o can be estimated also, but need not actually be displayed. 
The receiver can compute the likelihood function for several values of p, and always choose to display the out- 
put which gives the largest value of q. 

Since It la Impossible to compute the likelihood ratio for every value of p and o, It is of interest tu know 
how far apart p and p can be sampled without missing a peak in the likelihood ratio.   In Appendix C it is 
shown that the period p should be sampled at Intervals not greater than 

ao= -|—    In ( —1 (IV-12) nnmax        W 

where hmtü. la the number of the highest nonzero amplitude harmonic in the nearly periodic signal.   Similarly, 
It la shownin Appendix C that the correlation coefficient o should be sampled at an Interval not greater than 

to  = 0(1-0) . (IV-13) 

The remaining estimate of Interest la the waveform of one period of the nearly periodic waveform.   Since 
this parameter la changing from one period to the next, no special emphaslals placed on the estimation of this 
parameter.   Previous work on the estimation of periodic slgnals^O) indicates that a reasonable waveform 
estimate can be obtained at the output of the comb filter if the pre-emphasis filters are removed. 

No analysis of the goodness of the parameter estimates has been attempted here.  Such an analysis Is 
extremely difficult because of the use of the estimated noise covarlance in the pre-emphasis filter, and is 
perhaps best left to a simulation.   For an analysis of the estimation of periodic signals In noise, see Klncald 
andScudder."0' 

4. Display 

The receiver output display would ideally be the value of q.   In practice, a reasonable thing to do Is to 
display q as a function of p, to give the observer a feeling for the output when there Is no nearly periodic 
waveform present.  This function should be displayed at successive time intervals to give a three-dimensional 
display having time as one of the dimensions, the other two being q and p.   The observer then has (In effect) 
the conditional likelihood ratio as a function of p and time.   From this he must estimate the period and make 
a decision. 

The observer would not consciously go through the mathematics required to make the decision.   Instead, 
he would look for peaks in the display which are significantly higher than the surrounding level.  After some 
experience, the operator is usually able to tell if these bumps are significant, which Is presumably similar 
to estimating the period, inserting the necessary a priori probabilities and costs, and making a decision. 

B.   Receiver Evaluation as a Detector 

The theoretical evaluation of the receiver in terms of average cost is precluded by the fact that we cannot 
specify prior probabilities and decision costs. A standard measure of performance is the Receiver Operating 
Characteristics (ROC), described in Section n-E-l. 

In our case, the output which we should test against a threshold to obtain ROC plots Is the random variable 
q given by Eq. (IV-2).  Unfortunately, It is in general very difficult to get the probability distribution of q when 
the signal is present.  However, ROC curves can be obtained for a detector which computes just q^ instead 
of the sum q.   This means that the detector does not perform the incoherent summing operation after filtering 
and energy detecting.  This detector is easier to evaluate because it eliminates the problem of handling the 
sum of the highly dependent qj when the signal is present. 
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In order to make an evaluation of the proposorl receiver for a particular case, consider the following. 
AsHumc the nearly periodic Hi^nal in each period IH of the form 

Xp{t) = Key    sim exp(]am)exprj2n(m/p)t] (fV-U) 
rn^i 

where the am are Independent random variables with the same known variance n]^, and p is assumed known. 
The i_  are uniformly diRtributed between -n and n, and are independent of the ari.   The period p, the 
perlod-to-period correlation o, and the number of components l are assumed known.   In general terms, 
Eq. (IV-14) is a model of a signal which Is the sum of l random harmonic "line" components, where the spectral 
width of the lines Is determined by e.   Each harmonic is independent of the others, but they all have the same 
average power.   We assume the noise is white with known variance tajj. 

Under these assumptions, It is shown in Appendix D that the random variable qj, is chi-squared distributed 
with 2t degrees of freedom, both when the signal is present and when it is absent.   The expected value of q^ 
Is shown to be 

'%> 

2lr 

21 r 
T7 

(■*£') for (5=1 
{IV-15) 

for 1=0 

where r = 't'M . i.e., the input signal-to-nolse   atio.   We could define the ratio of these two expectations as 
the output signal-to-noise ratio 

snr = 1 + -ji4 r   • (IV-16) 

By this definition the snr is independent of the number of harmonirs t.   However, the ROC curves for this 
detector shown in Fig. 3 reveal a strong dependence upon <-.   The computation of these curves explained in 
Appendix D.   Note that the curves are dependent upon the product nr, where n is the number of periods at 
which the signal correlation drops to 5W, and r Is the input signal-to-noise ratio.   The quantities n and o 
are related by 

on = 4 • (iv-l7) 

The effect of increasing the number o^ dimensions is dramatically shown for the case nr = l.   For a false alarm 
rate of 10'2, the probability of detection increases from about 15< to over 90* as the number of harmonics 
increases from  1 to 15. 

Since the detector which computes q Instead of q^ would do even better, there is considerable reason for 
optimism about the performance of the proposed detector.   This optimism is tempered by several factors. 
First of all, we are not likely to have equal strength independent harmonics; in fact we are not likely to be 
certain a priori of the number, strength, and dependence of the harmonics.   The detector design, specifically 
the parameter }yD, must be based on some assumption about the signal structure.   To an extent, practical 
receivers might oe able to treat ?yp as a random variable to be estimated, and try many different combinations 
of harmonics.   At any rate, a receiver designed for a large number of harmonics will perform poorly when 
trying to detect a signal with only one or two strong harmonics. 
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Fig. 3 ROC curves of the equal-strength independent harmonic detector with no 
incoherent summing and a known period. 
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APPENDIX A 

We wish to evaluate the integral on the right of Eq.(ni-5) 

t(Zh,p) = jrfdX1lki(Z|«1 fX1)k), f((X1)k) (AD 

lor 0^1.   Substituting Eq. (111-4) for the first term in the Integrand, and Eq. (111-10) for the second term gives 

k 
/(Z|n = l) =   ffdXj} (2T)"kp/2hNp|'k/2exp ■- -J^CZj-X^'l^'plZi-X,)/ 

{2nrkp/2(i-^rp(k-,^i,Xp|-k/I 

expi-^d-oT'   )    X^x'pXl 
k = i 

+ D^   Xl*»XP
Xl 

1-j 

k-i k 

-o     Z_, xi-n  *Xp Xi ' f1       Xi   *Xpxl + i    ' 

t2^rkp!»xprk/2i»Npi'k/:(1-p:)'p(k',)/: 

,   ,rk 

J(dXl}kexp ,-j|^   (Xi-Zj)*»^ «i-Zi) 

+ x/d-D2)-1 «x^j^k^1-»')'1»^ x 

k-i 

+ V x^d+o«) (I-D
2
)'

1
 »xp xi 

1=2 

k-i 

- )' x^.od-^r1»^.^-)'x;o(i-D
2rSxpXl+1 

i=i 1=1 ; 

11 
(A2) 

The strategy is to get the exponent into a sum of quadratic forms in the variables Xj, plus a remainder term. 
Then each quadratic form can be integrated as a Gaussian joint density function.   By investigating the   iteration 
of this process, the portion of the exponent in the brackets can be shown to be equal to 

where 

£ (Xi-AjB/A-'Wi-AiBj) + Z* »Np Zi-Ci (A3) 
i=i 

k'il = ?Np + (i-o2)'' 'xp, 

'i'p 

and 

A:
1
 = jNp + d^Xi-D^-'ixp-o^-^'^xpAi-,^1-02)'1»} 

for       1 < i < k, (A4) 

Ak'   = *Np + (1-°2)"1 »Xp - oU-^'Vp Ak^od-D2)"1 »xp J 

19- 



'    IM 1 

DL 

k 

I 

k-' ,-1     -i 
n    od-o1)    »xpAt »Np Z) 

I-) 

Hl1'"'' 

L   i-i 

[JM 1=1 
sC-o2)'1   »xp Al    *Np   Zj     • 

. IA5) 

tA6) 

The parameters of must interest are the Aj, which are the covariance matrices u( the quadratic forms in X|, 
and the Cj which determine the ultimate form of the detector. 

Now carrying out the integration indicated in Eq. (A2) gives 

.(zi-i) M2-)-kp/2i»vnr
k/2hKnrk/3(i-cj)-p(k-,)/2 - iA.il/i 

'Xpl |7Npl 

1 - .      i k ) 
exp  i- -j V      Zi   *Np  Zj + -j \   cj 

[        i='i i = i 

i = i 

(A7) 
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APPENDIX B 

Since the cüc'ficlentt Aj and Ci In Eq. (Ill-16) arc too complex to be Implemented easily, some simplifying 
assumptions are n.cessary.   We shall Investigate the case of low slgnal-to-noise ratio.   We define low slgnal- 
to-nolse ratio tu be the condition that the eigenvalues of the slgnal-to-noise ratio matrix *xp*Np are 'eSB t*ian 

unity.   Now we note that for low signal-to-noisc ratio 

A,  =   hNp^O-^'xp^' 

-1 
'Xp »Np +  f1""2)    ']       »Xp (Bl) 

-   d-o2) » Xp   • 

Substituting this result into Eq. (84) for A2, A3, etc., we find that In general 

fdV) ?Xp; I * k 

A.- 

[   %   ; ' = * • 

(B2) 

Substituting this into Eq. (36) for c, gives 

i v ♦ i \ 

s' ' «M« 2;   .    (1-n2) »xpi ) .   0' '   '!'^ ?« ! ; i ^ k ■H»NpZj )    d-o2)^)'.   °H  »Np-j 
V]=' = 1 

ci ^ 

\i=r 
Dk-j  ?Np Zj   1      ? ,v 

V. % 

^    k-i   «-' o    J     *Np Zj ; I = k 

(B3) 

Note that the last term in the sum   of the q is emphasized much more strongly than the other terms. 
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APPENDDCC 

The response of the weighted circulating adder to a unit Impulse at time I - 0 Is 

to 

y(t) =)' o1 Mt-Jp) 

(CD 

= u..(t) pt/p y «(t-kp) 

where p is the length of the waveforms to be added, and u./t) Is the unit step function. 

' 0 for t < 0 

u, (t) = 
1 for t » 0 

The filter frequency response Is the Fourier transform of the system response to a unit impulse applied at 
time t = 0.  Taking the Fourier transform of both sides of Eq. (C1) gives 

Y(f) = d/pMiA.Hanf * t U/P) «U-h/p) 
h=-a 

(C2) 

= L    (l/p)ln(I/oUj2TT(f-h/p) 
n=-" 

where * denotes convolution here. This is the system function of a comb filter with "teeth" having the form 
of the functions on the right of Eq. (C2). The teeth are spaced 1/p apart. The tooth width, as measured be- 
tween the 1/2 power points, is (1/np) In (I/o). 

In Section IV-A-3, It Is argued that it Is desirable to know how far apart values of p should be chosen so 
that the comb filter would be sure to pass significant energy from a nearly periodic signal with period, say, po. 
Since varying the value of p makes the largest change In the center frequency tooth corresponding to the highest 
harmonic hmax, we need only concentrate on that tooth.   We shall adopt the criterion that the Increment Ap 
should not move this tooth further than the distance between Its half power points.   This tooth is centered at 
the frequency 

f = -^L  . (C4) 

Therefore, 

and 

, ..      ^max 
f+6f = P^P 

.     hmax 
Af     P+äP 

hmax 
P 

-   ""I«   An  f nr   An 

(C5) 

(C6) 

Substituting the distance between the half-power points for Af into Eq. (C6) 

AP = -if-     in (^    • (C7) 
"hmax V0 
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We UIBO want to know how far apart the values of o should be chosen so that the value of c which gives the 
maximum processor output will not be missed.   The main effect of changing r is to chanfro the width of the 
teeth of the comb filters.   If the teeth are wider than the line width of the nearly periodic signal, too much 
noise will get through.   If the teeth are too narrow,only a portion ol the signal will be passed by the comb teeth. 
This latter effect tends to spread the signal energy over the comb filters for several different values of p.   It 
seems that a reasonable criterion Is to require that the changes in o increment the comb tooth width by a 
factor of two, so that the signal-to-noise ratio does not change by more than a factor of two.   Therefore, 

1     .      ! 2,1 ,„flV —-   In ——   = — In   —   . (Ci) 
^p o-Ao      ip o 

Solving this equation for ^o  gUes 

to  - P(1-O)   . (C9) 
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APPENDIX D 

We wish to find the probability density function of the random variable q^ given by Eq. (IV-3) when the 
noise is white and the waveforms of the periods of the nearly periodic signal are of the form specified by Eq. 
(IV-14). 

We note that Eq. (IV-lO) can be written as follows: 

X (t) = Re ^      a m exp(jam) exp[J2n(m/p)tl 
J m 

(Dl) 

= )      amr cos 2r1(m/p)t - ami 8in2n(m/p)t 
'   m 

where 

a
mr =a

m
f-0Sam 

ami   = ak 8inak   • 

Then by the assumptions made on the an and a^, the following statistical averages can be computed 

^r>  = <a2mi    =T(aln <a^r>   =   <a2mr    =  T-(a5n>   =  ol (D2) 

<amranr>   = <amlani)  = 0 :    m »^ n (D3) 

<amranl>   = 0 J  a11 m'n   • (D4) 

Furthermore, the coefficients amr and amj are Gaussian random variables since they ire linear transfor- 
mations of the time samples of the sample functions of a Gaussian process. 

The equations (Dl) through (D4) show that the set of functions f cos 2TT (m/pH; sin 2-r(m/p)t) is an (ortho- 
normal) basis, with statistically Independent coefficients, for the sample functions in each period of the nearly 
periodic waveform.   Note that the cosine or sine coefficients of the same order in different periods cannot be 
independent because of the assumed period to period correlation o •  Also, note that all the coefficients a mr 
and am| have the same variance a^. 

In this new coordinate system of harmonic cosines and sines, the covariance matrices fN   and fXp are 
diagonal.   The f^p matrix  is diagonal because white noise has Independent coefficients In any basis. 

*Np = 2l°h I   • (D5) 

The $xp matrlx is diagonal, and will be of the form 

*Xp = 2taxl  • (D6) 

With the noise and covarlance matrices given by Eqs. (D5) and (D6), the expression for q^ given by 
Eq. (IV-3) becomes 

*  /* k. 2 Y 
%=l4i( y o J ^N 

zijj 
i=i      \j=i / 

k 

1=1   \       r=i 

i=i 

where the zy are the entries of the matrix Zj. 

1=1   \ i^ 
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Now, Hlncc qjj Is the Bum of uquares of Identically distributed, zero mean, Giusslan random variables, It Is 
chl squared distributed, wlln 2*. degrees of freedom.   Therefore, the only parameters neeued to completely 
specify their distribution are I and (y{>.   We note that since 

^U.Mh)   -«hfc  *ii ^O1^"1'1 4 {D8) 

then 
k      k 

{D9) 

2     -< - r-xoN 

k k      k JH ii „? 
\'      W-J',,2+0, N        n

K-Jl   n
K-J2   J "V 

J^i i,-i J^i 

We assume now that k is much larger than (l-o2)'',  i.e., k is sufficiently large that the correlation 
between the first and the kth period is essentially zero.   Then the following approximations are valid 

*0H) ^    1 

Substituting Eqs.(D10,11) into Eq.(D9) 

Y 'm'V - rtr (Dio) 

^   ^^^h0\U-U\^ fu£\ . (D11) 

^ (D12) 

where r = o^oj^, the signal-to-noise ratio per dimension, which is the same as the over-all ratio. 

The tables of the chi-squared distribution are given for ag = l.^Thus by dividing the variable qj by a2., 
the probabilities of detection and false alarm can be found.   When the threshold is set at some level r\, the 
probabilities of detection is the probability that q^/al exceeds r\/c\ .  The probability of false alarm is the 
probability q^/aj exceeds ri/tjj.  Since the tables give the probability that the variable exceeds chi squared 
for various values of chi squared and l, the probabilities of detection and false alarm can be read directly. 

On making up the ROC's, it is desirable to make the number of lines one of the parameters.  It must be 
remembered that each line consists of two dimensions.   Furthermore,  p as a parameter is hard to measure 
directly.  A more easily measured parameter is the number of periods n at which the correlation between 
the first and the nth period drops to 1/2, i.e., where on = 1/2.  A further simplification results if we assume 
n> 10, i.e.,  o > 0.933. in which case l+oM. 
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